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Skyrmions in nematic liquid crystals
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Analytical solutions for static two-dimensional axisymmetric localized states minimizing the Frank free
energy for nematic liquid crystals have been derived. These solitonic stru¢slsgmions include the well-
known Belavin-Polyakov solutions as a special case for equal elastic constants. The structure and the equilib-
rium parameters of these nematic skyrmions crucially depend on values of the elastic constants. Stability limits
of these structures and the possibility to observe them in nematic liquid crystals are discussed.
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. INTRODUCTION ferromagnet and derived analytical solutions fgx,y) de-
scribing them. The idea that such topologically nontrivial
Inhomogeneous localized structures are a SUbjeCt of inter‘[extures may arise in real physica| systems had a strong im-
sive investigations in many nonlinear field models of modermyact on modern physics. Such structuteamedskyrmions
physics[1,2]. In this paper we consider a special type of by analogy with localized structures in the Skyrme model for
localized configurations in a classical three-dimensional vecmesons and baryori§]) became an object of intensive in-
tor field n (Fig. 1), wheren has three components afl  vestigations in many condensed-matter models. Skyrmions
=1. This texture is homogeneous along a certain directiorre believed to play an important role in dynamics of mag-
(z axis in this paper the vectom is parallel to thez axis at  netic systemg6] and can be stabilized by surface-induced
the center{n=(0,0,1)] and, by continuous rotation along interactions in magnetic nanostructuf&g. Skyrmion con-
radial directions in thexoy basal plane, it approaches the figurations play an important role in quantum Hall systems
antiparallel orientation[n=(0,0,—1)] when the distance [8], Bose-Einstein condensatf8], and magnetic semicon-
from the center tends to infinityFig. 1). ductors[10]. It was also found that the formation of skyrmi-
Mathematically these two-dimensional nonsingular local-ons accompanies the introduction of holes in the Cplane
ized structures representappingsof the xoy basal plane, of high-T, superconductors[11]. Beyond models in
i.e., R? onto the unit spher&? of spin stategdirections of  condensed-matter physics, Belavin-Polyakov skyrmions are
the vectom). Because the vector tends to the same value central objects of interest investigated in modern field theory
[n=(0,0,—1)] for all points at infinity the plan&oymay be  [12], and mathematical physi¢43].
folded into a spherical surfa¢é]. By identification of points In the course of various investigations about these local-
at infinity in R?, the spaceR? is compactified intdS?, and  ized structures in different fields of nonlinear physics, vari-
the vector configurationa(x,y) in our localized structures ous different nhames have been coined. The term “two-
are recognized as mappings between unit sphgfesS?. dimensional topological solitons” has been used in some
Thus, they may be classified by the homotopy grbLy§S?) magnetic models to designate topological features of these
[1,3]. In general, the configuratiomgx,y) in these patterns states, the terms “vortices” and “flux lines” are due to some
need not have any symmetry within th@y basal plane. physical analogy between textures in Fig. 1 and vortex states
However, in known physical models the internal symmetryin the mixed state of superconductdist] and in liquid he-
of the system imposes the axial symmetry on the possibléum [15]. Terms like “threads” or “filaments” are inspired
localized solutions. Thus, in this paper we consider only axity the resemblance with certain liquid crystal textureg].
ally symmetric configurations af(x,y) as simplest versions Finally, “skyrmion” and “baby skyrmion” imply their rela-
of localized structures. Examples are displayed in Fig. 1. tion to the localized solutions earlier derived by Skyrme
As physical objects, these structures first were describedithin his model for low-energy dynamics of mesons and
for a classical model of an isotropic ferromagnet in Réf. baryons[5,17]. In fact, the Skyrme model5] comprises
In that paper, Belavin and Polyakov demonstrated that théhree spatial dimensions, and the name “baby skyrmion”
localized stategFig. 1) belong to metastable states of the was used by some field theoridt$7] to distinguish two-
dimensional localized states from “mature” three-
dimensional solutions in the original Skyrme mod#g]. In
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nonsingular structures in generalized elasticity models.

1. MODEL

Within the continuum theory of liquid crystald 6] the
elastic energyFrank energy of a nematic system is written
as

1
sz de=fE[Kl(divn)2+K2(n-curIn)2

+Kz(nxcurln)?] dx, (1)

where the directon is a unity vectorK; are elastic constants
associated with splayK(;), twist (K,), and bend K3) dis-
tortions[16]. In external electridmagnetig fields dielectric
(diamagnetit response of the liquid crystal is described by
(b) tz additional energy density contributions

wi=—Ae(n-E)?>—Ax(n-H)?, (2)

whereAe and Ay are dielectric and diamagnetic anisotro-
pies, respectively16]. The equilibrium distributions of the
vector fieldn(r) are determined by minimizing the Frank
free energy(1) with the corresponding boundary conditions.

In this paper we consider skyrmions of the type shown in
Fig. 1, i.e., axisymmetric structures with boundary condi-
tionsn(0)=(0,0,1), andh(r)=(0,0,—1) for |r|—c. These
solutions may conveniently be expressed by using spherical
coordinates for the vectar and cylindrical coordinates for
the spatial variables

L1 ae?TTTTesll

n=[sinf cosy,sindsiny,cosd], r=(p,¢,z). ()
FIG. 1. Structure of the director field of axisymmetric nematic [ v v | (p.2)

skyrmions in thexoy basal plane. Along the direction, the con-  The skyrmions are assumed to be homogeneous along their
figuration is homogeneous, and the center line of the skyrmions igxes taken as theaxis and, thus, the director varies only
along thez axis. In a skyrmion with phase angle=0 (@) the  in the basal plane, i.e., it depends only erand ¢. More-
directorn rotates in thepoz plane. For phase angle=/2 () n ~ gyer, rotational symmetry of these structures means that the
rotates in the plane perpendicular to the radial directions as 'nd"solutions have the fornd(p),#(¢). First, we consider the
cated along the vector. Lower panels show the directors in #ogy important special case of equal elastic constamts=(K

plane along the radial directions through the skyrmion center. =Ks=K). In this single-constant approximatiotne Frank

=K3=K). -

. . __energy(1) reduces to the functional form
tals[16]. We show that special types of skyrmions can exist

in nematic liquid crystals, and we derive analytical solutions K an; an;

for these nematic skyrmions by minimizing the Frank free W= > X Ix. dx (4)
i i ity i i i 9%

energy. Further, we discuss their structure and stability lim-

its. To motivate this work, we briefly anticipate a central gjmijar to the energy of an isotropic ferromagrids]. In

result that will be derived below. The Frank energy Comainsparticular, for functionsd(p), ¥($) the energy functional
the manifold of Belavin-Polyakov solutiongl] only in a (1), in this case, can be written as

special case within the so-called single-constant approxima-

tion. In the general case of an arbitrary set of elastic con- o =K [ [d6\2 sirPg|dy)\?

stants, this classical field-model puts restrictions on possible W=J d¢>j 5 (d—) +—2(d—) pdp. (5
skyrmion structures. But, these restrictions do not fully lift 0 0 p P ¢

the degeneracy of the corresponding solutions rfematic . . ,

skyrmions In a forthcoming companion paper, we will show The Euler equations for the function&) with the boundary

that, in cholestericliquid crystals, the degeneracy of solu- conditions

tions can be lifted to yield unique and stable skyrmipt8]. 0(0)=0, 6(cc)=1 (6)
This is achieved by inclusion of particular terms in the Frank '

energy to describe the tendency for twisted configurations imave analytical solutionéBelavin and Polyakoy4]):
cholesterics. Here, we restrict ourselves to the case of skyr-

mions in nematics to exemplify the restrictions for localized 6=2arctatip/py)N, ¢=No+a (7)

016602-2



SKYRMIONS IN NEMATIC LIQUID CRYSTALS PHYSICAL REVIEW E67, 016602 (2003

with the topological charggl] diagram of all possible skyrmionic solutions for the func-
tional Eq.(9) and of their stability limits must be done nu-
Q—i ijkf n-ﬂﬁd dv=N ®) merically and will be presented elsewhdisee, also, Ref.
A Lox ay y=N, [19]). The nonlinear dependence of the energy dergSjtyn

a=iy— ¢ will in the general case only admit solutions for

where €'’ is the totally antisymmetric tensor ard is @  certain fixed values of the parameter In some cases opti-
nonzero integer that yields the number of windings for themal values ofx can be obtained without any calculation. For
vectorn in the basal plane. The angte varying in the in-  example, wherk,;=Kj the minimum of the functional Eq.
terval[0,7] and the parametgr, within [0,~] describe the (9) with respect toa does not depend on the distributions
manifold of solutions(7). In particular, the localized struc- ¢(p) and is reached either at=0 (K;<K,) or a= /2
tures in Fig. 1 represent skyrmions with the topological(k,>K,). In this contribution we consider the skyrmions
chargeQ=1 anda=0 (a) or a= /2 (b). Integration of Eqs.  with o= /2 which are of a special interest. First, because
(5) with (7) yields the valueE,=47NK for the energy of these structures turned out to be stable for the relationship
the Belavin-Polyakov skyrmion. This energy does not deetween the elastic constants 1 which holds in all known
pend on the parametets and p,. This remarkable degen- nematicq16] (see the end of this sectiprSecond, the equi-
eracy of the solutions is a consequence of the invariance afprium distribution ofn(r) in this divergence-free structure
the skyrmion energy7) under scale transformation of the can be described analytically. In this structure, the ventor
profiles 6(p) — 6(p/\) with A>0 and under transformations rotates in the planes perpendicular to the radial directions in
y— +const. the skyrmion[Fig. 1(b)]. As follows from Eq.(9), for a

Mathematically the functional Eq4) is related to so- = 7/2, the first term in the Frank energy equals zero, and the
called Q3) nonlinear sigma model®r CP; mode) in gen-  skyrmion is formed under the influence of twist and bend
eral field theories[1], and it plays an important role in interactions only.
condensed-matter phenomenological models. That is why we demonstrate in detail this important and mathemati-
Belavin-Polyakov solutions found applications in theoriescally interesting case as a representative for the whole class
for many physical systems and skyrmions have become imof axisymmetric skyrmions in nematics. After integrating

portant objects of interest in various modern theofigse  with respect tog the functional Eq(1) reduces to the fol-
references in the Introduction lin the following section, we  |owing form:

show how the solution§7) behave in the general case with

ijk

arbitrary values for the elastic constants in the Frank func- o
tional Eq.(1) for nematics. W=m K, 0 dp
I1l. SOLUTIONS FOR NEMATIC SKYRMIONS = (df sinfcos)? sint*g
:WKZ,[ d—+ +k——|pdp, (10
For director configurations of typé(p), #(¢) in nemat- 0 p p P

ics with nonequal elastic constars the energy density in ) i )
Eq. (1) has the following form: wherew is a reduced energy density per length, and the ratio

k=K3/K, characterizes relative contributions of the twist

de\ sindcogy— o) (dy\]? and bend in the total energy balance. The Euler equation for
2w=Ky cosgcos = )| |+ ———— | g5 this functional
p p ¢
1K, sint ¢)(d6> . sin @ cosé sin(y— qS)(dw)r d20+ 1df sin20cos29  sirfdsin26 0 @)
sin(¢y— )| — — —t -0 - =
2 Sy dp p de dp? pdp 2p2 2
d0 2 . .
Ky SirP8 co(y— ¢)(d_) has the first integral
’ da)z— if6(coL 0+ ksinf0)=G(6 (12
.\ sin 0 siré(y— ¢)(d¢)2] © Pap) =Simo(cos o+ ksimo)=G(0).
p? d¢/ | Integration of Eq.(12) leads to the equation
The equation for) with the linear ansatzy=N ¢+« re- cotf+ \col o+ k= po/p. (13)

duces to sin2(N—1)¢+«a]=0. Thus, in contrast to the case

of equal elastic constar(7), only solutions with winding Here, p,>0 is an integration constant. Using this equation
numberN=1 and a=0 or a=x/2 (Fig. 1) are possible. we can write the solutions for the skyrmion in the following
Two ratios of the elastic constants span the phase space fafrm:

independent control parameters for this functional. In this (ol

paper we use the ratios=K, /K, and k=K3/K5. Minimi- 1-«k(plpo

zation of the functional Eq9) yields the equilibrium values coto= 2(plpo) Y=o+ ml2, (14)

of the anglea and the corresponding profilégp) for each

point in the phase planer(x). An analysis of the phase or in Cartesian coordinates
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FIG. 3. Phase trajectories of the skyrmion solutio@s.Phase
space of the solutions for=2; (b) phase trajectories for fixegl
1.0) and different values of.

FIG. 2. Skyrmion profiles for different values of the parameter
k=K3/K,. For weakx (a) the profiles have arrowlike shape; for ve
large « (b) the skyrmions have strongly localized cores separated@'Pitrarily chosen apo=

from the outer part by a thin “domain wall.” ) . ) )
(p<<ppo) the angle # varies linearly with the radius &

n=[—4Q(p/py)sind, 4Q(plp,)cosd, =2plpe) and at large distancep{») 0=m—2pq/(kp).
[ (plpo)sing (plpo)cose These skyrmion structures are determined by a competition
O[1=x(plpg) 22— 4(plpg)dl, (15) between twist and bend interactiofisee Eq.(10)]: The

former includes the derivative of, and, thus, suppresses
where Q=11\[1—x(p/po)212+4(plpo)2. Skyrmion pro- strong variations of (Fig. 4). The Igtter favors states with
files (14) for different values ofic are plotted in Fig. 2. Note Small in-plane components. Evolution of the skyrmion pro-

that the energy of these solutions remains constant under €S (Fig. 2) and the phase trajectorig&ig. 3(b)] under
transformation of the type variation of the parametek reflect these tendencies. For

weak bendingenergy(small ) [see Fig. 4a)] the profiles

D0 — 0(p) have an arrowlike shape with the steepest slopg at

0(p)=06(p/\), \>0. 16 . . .
(p)=0(pIN) (16 =0 [Fig. 2@)]. In-plane states do not contribute to the twist
Phaserajectoriesor orbits of the solutions energy. Thus, when the parameterapproaches zero, the

region with values off close tow/2 expands unlimitedly

de [Fig. 3(b)]. Finally, for k=0 it transforms into a nonlocal-

Pog, = \COS 6+ ksirf#(cosh+ /cos 6+ ksirth), ized structureFig. 5)
17
O=arctani2p/pg). (19

calculated from Eqs(12) and (13), are plotted in phase-

space 0,d6/dp) (Fig. 3. The orbits(17) start in the points  Such configurationgvortices occur in planar systeme.g.,
(0,2/pg) and end in the common point(0) [Fig. 3@]. As  in easy-plane ferromagnet21]. The energy of these vorti-

po varies in the regio0,) the trajectorieg17) cover the ces logarithmically increases with increasing vortex radius
whole phase space. Thus, the set of profile$ comprises and becomes infinite in the case of nonlocalized magnetic
all possible solutions of the boundary value problefhl) vortices [21]. On the contrary, the nonlocalized skyrmion
with (6). This means that these equations admit only solu{18) has finite energy because, due to the absence of bend
tions with A@=7 and do not have solutions with higher interactions ¢=0), in-plane inhomogeneous configurations
winding numbers foi® as found for skyrmions in other mod- yield no contribution to the skyrmion energy. With increas-
els (see, e.g., Ref[20]). Near the center of the skyrmion ing values ofx the influence of bend distortions on the equi-
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0 2 P n 0 1 2 3 4 5
K
Tota (b)) k=5 FIG. 6. Skyrmion energyin units of 27K,) as a function of the
@ 20. parameterk.
Twist Integration of the energy functional EGLO) with the so-
we lutions (14) yields the following expression for the skyrmion
104 energy
B
end E=2mK,J;(k)
14 K | 1+V1_K) 0< k<l
0 . n , K
0 w2 n 2\1_K 1_\/1_K
[ = 27TK2
K ) k—1
FIG. 4. Reduced energy densigy from Eq. (10) and twist and 1+ arcsin ) k> 1.
bend contributions as functions of anghefor k=0.3 (a) and « Ve—1

=5 (b). (19

librium skyrmion structures increaséBig. 4(b)]. The skyr-
mion profiles transform into structures with a strongly
localized core separated from the outer parts by a thin “do
main wall” [Fig. 2(b)]. For k>4/3, the profiles have an in-

For zero bending, the skyrmion ener¢i®) has the mini-
mum valueE=2wK,, and it increases monotonically with
increasingk (Fig. 6).

. . _ 71 71 .
flection point alp™ = po V2x~"V1—«"" [Fig. Ab)]. The pa- IV. STABILITY OF THE SOLUTIONS
rameterp* increases from zero at=4/3 to its maximum
value atx* =18(11-\13) 1=2.4343; for larger param- In this section we investigate the stability of the solutions

eter p* monotonically decreases and approaches zere as (14). Because the skyrmions have higher energy than the
tends to infinity. The Belavin-Polyakov skyrmicf?) with ~homogeneous state they can represent only local minima of
a=m/2 is included in the general solutiofl4) as special the energy. In this case theinetastabilitymeans that small
case fork=1. perturbations of the structufd4) should only increase their
energy. To check the stability one has to study the energy
change under small perturbations of the localized structure
(14). We exclude from consideration distortions that violate
axial symmetry because they will only increase the skyrmion
energy. Thus, we calculate the energy for a distorted struc-
ture

Bp)=0(p)+&(p), Pp)=w(d)+7y, &y<l. (20

Distortions in the basal plang are assumed to be homoge-
neous because gradients of the anglill also increase the
energy. By expanding the energy of the distorted strudire
and keeping only terms up to second ordefiand y one
obtainsW=W©+W®) whereW(®=E (19) is the energy
of the undisturbed skyrmion and the energy contribution
FIG. 5. Structure ofi in the core of the nonlocalized skyrmion W(?) includes terms quadratic with respect to the parameters
7. §andy

00 T TTTTTT®oeo
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W@ =7 K f —[w@+ w2,
2], 5 We'Twi’]

2
£ +sintg[ cot'd— 6 cof o+ 1

+ k(3 cofh—1)]€%,

2
wi?=p?

2
p?(vcos o+ KSin20—1)<d0)

(2)—
W — -
Y dp

+ (v sirf— k sint6—sirg co§0)} Y. (21

The angled(p) is given by Eq.(14). The termw!?) includes
the energy of radial distortions. Perturbatiof() describe
arbitrarily small deformations of the profilel4) which do

not violate the boundary condition®), i.e., £(0)=&()

=0. Stability of the skyrmion with respect to such deforma-
tions means thatv{?) is positive for all functions(p) and

can be established by solving the spectral problem for thd,=
functional W?)(£,d¢/dp) (see, e.g., Ref20]). In our case,
however, there is an easier way to resolve the problem. By
using the first integral Eq12) one can change the variable

in the integral Eq(21) as

(2)
=Wy~ 'dp
W@ =7 Kzf S
o P

[ de
=17 —_—
?Jo JG(o)

2 2
dg) , 1d°6(0) 52]

8 do) "2 qg?

(22

G(0)(
Substitution ofé=\G(0) ¢ into Eq. (22) yields
- 2
vvg2)=m<2f G(H)(%) deé. (23)
0

Thus, for all distortions/(6) the energy contributio?
=0. Equality in this relation only holds for constafit Un-
der all other distortiong # const, the skyrmion14) pre-

serves radial stability. In this connection we note that func-
tions ¢(6)=C\G(6) (C is an arbitrary constaptdescribe

scaling transformation§l6) for A=1+ ¢ and |£|<1. This

PHYSICAL REVIEW E57, 016602 (2003

stable

Al ,x)=0

0.5
unstable

0.0 v T T T T T

FIG. 7. Boundary of stability for the skyrmiond4) in the
(v,x) phase plane. The structure is stable above the critical line
A(v,k)=0; cf. (24).

2— 2 1+1-
X i “11, o<k<1
41-x) 8(1-w)¥? \1-\1-«

2—«k K? ) k—1 1
A1=K) ga-w N e T

(25
[ 1 | 1+\/1—K) e et
n , K
V1—«k 1-V1—«
J3=1 k-1 (26)
2 arcsi
K
—, k>1.
\ K_l

The skyrmion(14) is stable with respect to homogeneous
in-plane distortions wheA(v,x)>0 (24). In the phase-
plane (x,v) the critical lineA(v,x)=0 confines the region
of skyrmion stability (Fig. 7). The area, where the
skyrmion with o= /2 is unstable, is restricted to small
values of k and v. The critical line approaches zero as
k=4exp(=2/v). In all known nematics the splay elastic
constant is larger than the twist constant<(1) [16]. In this
practically important case the skyrmion is stable for arbitrary
values of parametex.

V. DISCUSSION AND CONCLUSIONS

In this paper we have derived analytical solutighg) for

result is equivalent to the mentioned invariance of the soluskyrmions minimizing the Frank free energy). The Frank

tions (14) under scaling16). Integration in Eq.21) yields

functional includes in most general form invariants quadratic

the following result for the energy contributions due to in- with respect to the spatial derivatives of the order parameter.

plane distortionsy

) W(z)d

W‘Z)szJ z
4 2Jo p

=A(v,k) yz, (24

A(v,k)=m7Ko[k(J1—Jp)—2J1+v(Ir+J3)],

where the functionJ;(«) is introduced in Eq.(19), and
Jo(k) andJ;(«) are defined by

And in this connection the functional E@l) can be consid-
ered as a generalization of thg3D nonlinear sigma model
(4). In contrast to the Belavin-Polyakov solutiof® which

are degenerate with respect to the values of the phaaed
may have arbitrary winding numbeksthe nematic skyrmi-
ons, i.e., solutiong14) for the Frank energy have the topo-
logical chargeQ= 1. In addition, the angle: generally has a
fixed value. Only in the special case of equal elastic con-
stants the corresponding Belavin-Polyakov solutions exist
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for arbitrary values ofe due to the isotropy of the elastic specific interactions occurring in noncentrosymmetric sys-
behavior (4). Here, we analyzed the special case where tems due to chiral symmetry breakifi@,25. Phenomeno-
=m/2: the plane of rotation is perpendicular to the radiallogically, thesechiral interactions are described by invariants
direction[Fig. 1(b)]. We come to the important result that, linear with respect to the first spatial derivativésmiown as
due to the anisotropy of the elastic behavior in the full ex-Lifshitz invariant$ [20,25. The stabilizing influence of the
pression of the Frank enerd¥), the degeneracy of the skyr- chiral interactions on multidimensional localized structures
mionic solutions in the basal plane is lifted. However, thein noncentrosymmetric liquid crystals, i.e., cholesterics will
skyrmion energy(10) still preserves invariance under the be considered in a separate contributi@s].
scale transformation&l 6). There can be other axisymmetric and localized solutions
Invariance of the solutiond 4) with respect to the scaling for the model(1). As was mentioned above, in some cases
transformatior(16) means that the Frank ener€l) for nem-  the skyrmion withy/= ¢ [Fig. 1(a)] has lower energy than
atics does not stabilize skyrmions with well-defined sizesthe skyrmion(14). Skyrmions with more complex structures
The skyrmiong14) are in the state ahdifferent equilibrium  and interacting skyrmions may be an interesting topic for
with respect to arbitrary compression<{@ <1) or stretch- future investigations. We remind that the isotropic mo@dé!
ing (\>1). Thus, they turn out to be unstable under thehas multiskyrmion solutiongt], multitwisted structureg26],
influence of applied electric or magnetic fields in conform-and skyrmion lattice$27].
ance with theHobart-Derrick theorenon localized solutions The Belavin-Polyakov solutionf4] as nonlinear, topo-
for this type of functionald22]. To demonstrate that, we logically nontrivial, and localized objects have proved to be
consider a nematic in a magnetic and electric field and calef great interest in the context of theoretical models in
culate the variation of its enerdyl) with (2) contribution = condensed-matter physics. A practical realization of such

under the scaling transformati¢h6). The new energyV( ) skyrmioniq textures in real magnetic_ systems, however, is
can be expressed as the following combination of the energjroblematic due to the extreme idealization of the madgl

contributions(1) and (2) in W(6): and the specific character of these solutions. Nematic liquid
crystals should provide more favorable conditions for such
W(6) =W+ W; A2, experiments. The nematic skyrmions could be generated in

the homeotropic texture similarly to isolated bubble domains
% o in some cholestericée.g., by dynamic scatteringl6,28§),
Wo= fo w(6)pdp, szfo wi(f)pdp. (270 and the relatively slow dynamics in liquid-crystal systems
may facilitate the observation of topological excitations.
It is clear from Eq.(27) that the functional(1) with the In this paper the analysis of nematic skyrmions has been
energy contributior(2) does not have local minima for axi- estricted to straight infinite lines in unbounded ideal mate-
symmetric solution®(p). For any of these configurations, fals. In confined nematics these localized structures may
the energy(27) can decrease by unlimited compressiiin ~ create loops or end at defects or confining surfaces. The in-
W;>0), or expansion \\/;<0) of the core. This result, fluence of anchoring effects and interactions with disclina-
known asHobart-Derrick theoreni22], applies to any inter- tions add new aspects to the physics of nematic skyrmions.
action functional consisting of only two types of terms: qua- | "€ formation of so-called “thick threads” and their loops
dratic with respect to spatial derivativél and those includ- PY dynamic scatterinf29] may be considered as an indirect
ing no spatial derivative?). It is remarkable that this radial indication of the existence of the nematic skyrmions. String-
instability can be eliminated only by adding new terms thatlike textures generated by rapid cooling through the
do not belong to the mentioned classes. Hence, skyrmiori§Otropic-to-nematic phase transitions in regufd] and
can be stabilized by terms with spatial derivatives to thePOlymer nematic§31] may be another indication for the
power higher than twde.g., fourth-order gradient terms in €Xistence of nematic skyrmions.
the Skyrme mod€l5,17)). In condensed-matter systems such
fourth—o_rder terms arise in _modgls with complex competing ACKNOWLEDGMENTS
interactiong 23]. The skyrmions in such systems have been
investigated in Refl24]. Another important mechanism sta-  We thank N. Rivier for discussion. A.N.B. thanks H. Es-
bilizing multidimensional localized structures is provided by chrig for support and hospitality at the IFW Dresden.
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