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Skyrmions in nematic liquid crystals
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Analytical solutions for static two-dimensional axisymmetric localized states minimizing the Frank free
energy for nematic liquid crystals have been derived. These solitonic structures~skyrmions! include the well-
known Belavin-Polyakov solutions as a special case for equal elastic constants. The structure and the equilib-
rium parameters of these nematic skyrmions crucially depend on values of the elastic constants. Stability limits
of these structures and the possibility to observe them in nematic liquid crystals are discussed.
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I. INTRODUCTION

Inhomogeneous localized structures are a subject of in
sive investigations in many nonlinear field models of mod
physics @1,2#. In this paper we consider a special type
localized configurations in a classical three-dimensional v
tor field n ~Fig. 1!, wheren has three components andunu
51. This texture is homogeneous along a certain direc
(z axis in this paper!; the vectorn is parallel to thez axis at
the center@n5(0,0,1)# and, by continuous rotation alon
radial directions in thexoy basal plane, it approaches th
antiparallel orientation@n5(0,0,21)# when the distance
from the center tends to infinity~Fig. 1!.

Mathematically these two-dimensional nonsingular loc
ized structures representmappingsof the xoy basal plane,
i.e., R2 onto the unit sphereS2 of spin states~directions of
the vectorn!. Because the vectorn tends to the same valu
@n5(0,0,21)# for all points at infinity the planexoymay be
folded into a spherical surface@1#. By identification of points
at infinity in R2, the spaceR2 is compactified intoS2, and
the vector configurationsn(x,y) in our localized structures
are recognized as mappings between unit spheresS2→S2.
Thus, they may be classified by the homotopy groupP2(S2)
@1,3#. In general, the configurationsn(x,y) in these patterns
need not have any symmetry within thexoy basal plane.
However, in known physical models the internal symme
of the system imposes the axial symmetry on the poss
localized solutions. Thus, in this paper we consider only a
ally symmetric configurations ofn(x,y) as simplest versions
of localized structures. Examples are displayed in Fig. 1

As physical objects, these structures first were descri
for a classical model of an isotropic ferromagnet in Ref.@4#.
In that paper, Belavin and Polyakov demonstrated that
localized states~Fig. 1! belong to metastable states of th
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ferromagnet and derived analytical solutions forn(x,y) de-
scribing them. The idea that such topologically nontriv
textures may arise in real physical systems had a strong
pact on modern physics. Such structures~namedskyrmions
by analogy with localized structures in the Skyrme model
mesons and baryons@5#! became an object of intensive in
vestigations in many condensed-matter models. Skyrmi
are believed to play an important role in dynamics of ma
netic systems@6# and can be stabilized by surface-induc
interactions in magnetic nanostructures@7#. Skyrmion con-
figurations play an important role in quantum Hall syste
@8#, Bose-Einstein condensates@9#, and magnetic semicon
ductors@10#. It was also found that the formation of skyrm
ons accompanies the introduction of holes in the CuO2 plane
of high-Tc superconductors@11#. Beyond models in
condensed-matter physics, Belavin-Polyakov skyrmions
central objects of interest investigated in modern field the
@12#, and mathematical physics@13#.

In the course of various investigations about these loc
ized structures in different fields of nonlinear physics, va
ous different names have been coined. The term ‘‘tw
dimensional topological solitons’’ has been used in so
magnetic models to designate topological features of th
states, the terms ‘‘vortices’’ and ‘‘flux lines’’ are due to som
physical analogy between textures in Fig. 1 and vortex sta
in the mixed state of superconductors@14# and in liquid he-
lium @15#. Terms like ‘‘threads’’ or ‘‘filaments’’ are inspired
by the resemblance with certain liquid crystal textures@16#.
Finally, ‘‘skyrmion’’ and ‘‘baby skyrmion’’ imply their rela-
tion to the localized solutions earlier derived by Skyrm
within his model for low-energy dynamics of mesons a
baryons @5,17#. In fact, the Skyrme model@5# comprises
three spatial dimensions, and the name ‘‘baby skyrmio
was used by some field theorists@17# to distinguish two-
dimensional localized states from ‘‘mature’’ three
dimensional solutions in the original Skyrme model@5#. In
recent years, the term ‘‘skyrmion’’ became generally a
cepted for such nonsingular two-dimensional localiz
states.

In this contribution, we investigate skyrmion structur
for a general elasticity model of an orientable continuo
medium, i.e., the Frank free energy for nematic liquid cry

ol-
v

,

©2003 The American Physical Society02-1



is
n
ee
im
a
in

m
on
ib
lift

w
-

n
s
ky
ed

s

by

o-

k
s.
in

di-

rical
r

their

the

tic

s

nd
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tals @16#. We show that special types of skyrmions can ex
in nematic liquid crystals, and we derive analytical solutio
for these nematic skyrmions by minimizing the Frank fr
energy. Further, we discuss their structure and stability l
its. To motivate this work, we briefly anticipate a centr
result that will be derived below. The Frank energy conta
the manifold of Belavin-Polyakov solutions@4# only in a
special case within the so-called single-constant approxi
tion. In the general case of an arbitrary set of elastic c
stants, this classical field-model puts restrictions on poss
skyrmion structures. But, these restrictions do not fully
the degeneracy of the corresponding solutions fornematic
skyrmions. In a forthcoming companion paper, we will sho
that, in cholestericliquid crystals, the degeneracy of solu
tions can be lifted to yield unique and stable skyrmions@18#.
This is achieved by inclusion of particular terms in the Fra
energy to describe the tendency for twisted configuration
cholesterics. Here, we restrict ourselves to the case of s
mions in nematics to exemplify the restrictions for localiz

FIG. 1. Structure of the director field of axisymmetric nema
skyrmions in thexoy basal plane. Along thez direction, the con-
figuration is homogeneous, and the center line of the skyrmion
along thez axis. In a skyrmion with phase anglea50 ~a! the
directorn rotates in theroz plane. For phase anglea5p/2 ~b! n
rotates in the plane perpendicular to the radial directions as i
cated along ther vector. Lower panels show the directors in thexoy
plane along the radial directions through the skyrmion center.
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II. MODEL

Within the continuum theory of liquid crystals@16# the
elastic energy~Frank energy! of a nematic system is written
as

W5E wdx5E 1

2
@K1~div n!21K2~n•curln!2

1K3~n3curln!2# dx, ~1!

where the directorn is a unity vector,Ki are elastic constant
associated with splay (K1), twist (K2), and bend (K3) dis-
tortions @16#. In external electric~magnetic! fields dielectric
~diamagnetic! response of the liquid crystal is described
additional energy density contributions

wf52De~n•E!22Dx~n•H!2, ~2!

whereDe and Dx are dielectric and diamagnetic anisotr
pies, respectively@16#. The equilibrium distributions of the
vector field n(r ) are determined by minimizing the Fran
free energy~1! with the corresponding boundary condition

In this paper we consider skyrmions of the type shown
Fig. 1, i.e., axisymmetric structures with boundary con
tionsn(0)5(0,0,1), andn(r )5(0,0,21) for ur u→`. These
solutions may conveniently be expressed by using sphe
coordinates for the vectorn and cylindrical coordinates fo
the spatial variables

n5@sinu cosc,sinu sinc,cosu#, r5~r,f,z!. ~3!

The skyrmions are assumed to be homogeneous along
axes taken as thez axis and, thus, the directorn varies only
in the basal plane, i.e., it depends only onr and f. More-
over, rotational symmetry of these structures means that
solutions have the formu(r),c(f). First, we consider the
important special case of equal elastic constants (K15K2
5K35K). In this single-constant approximationthe Frank
energy~1! reduces to the functional form

W5
K

2E (
i , j

S ]ni

]xj

]ni

]xj
Ddx ~4!

similar to the energy of an isotropic ferromagnet@16#. In
particular, for functionsu(r), c(f) the energy functional
~1!, in this case, can be written as

W5E
0

2p

dfE
0

`K

2 F S du

dr D 2

1
sin2u

r2 S dc

df D 2Gr dr. ~5!

The Euler equations for the functional~5! with the boundary
conditions

u~0!50, u~`!5p ~6!

have analytical solutions~Belavin and Polyakov@4#!:

u52arctan~r/r0!N, c5N f1a ~7!
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SKYRMIONS IN NEMATIC LIQUID CRYSTALS PHYSICAL REVIEW E67, 016602 ~2003!
with the topological charge@1#

Q5
1

4p
e i jkE ni

]nj

]x

]nk

]y
dx dy5N, ~8!

where e i jk is the totally antisymmetric tensor andN is a
nonzero integer that yields the number of windings for
vector n in the basal plane. The anglea varying in the in-
terval @0,p# and the parameterr0 within @0,̀ # describe the
manifold of solutions~7!. In particular, the localized struc
tures in Fig. 1 represent skyrmions with the topologic
chargeQ51 anda50 ~a! or a5p/2 ~b!. Integration of Eqs.
~5! with ~7! yields the valueE054pNK for the energy of
the Belavin-Polyakov skyrmion. This energy does not d
pend on the parametersa and r0. This remarkable degen
eracy of the solutions is a consequence of the invarianc
the skyrmion energy~7! under scale transformation of th
profilesu(r)→u(r/l) with l.0 and under transformation
c→c1const.

Mathematically the functional Eq.~4! is related to so-
called O~3! nonlinear sigma models~or CP1 model! in gen-
eral field theories@1#, and it plays an important role in
condensed-matter phenomenological models. That is
Belavin-Polyakov solutions found applications in theor
for many physical systems and skyrmions have become
portant objects of interest in various modern theories~see
references in the Introduction I!. In the following section, we
show how the solutions~7! behave in the general case wi
arbitrary values for the elastic constants in the Frank fu
tional Eq.~1! for nematics.

III. SOLUTIONS FOR NEMATIC SKYRMIONS

For director configurations of typeu(r), c(f) in nemat-
ics with nonequal elastic constantsKi the energy density in
Eq. ~1! has the following form:

2w5K1Fcosu cos~c2f!S du

dr D1
sinu cos~c2f!

r S dc

df D G2

1K2Fsin~c2f!S du

dr D1
sinu cosu sin~c2f!

r S dc

df D G2

1K3Fsin2u cos2~c2f!S du

dr D 2

1
sin4u sin2~c2f!

r2 S dc

df D 2G . ~9!

The equation forc with the linear ansatzc5N f1a re-
duces to sin2@(N21)f1a#50. Thus, in contrast to the cas
of equal elastic constant~7!, only solutions with winding
numberN51 and a50 or a5p/2 ~Fig. 1! are possible.
Two ratios of the elastic constants span the phase spac
independent control parameters for this functional. In t
paper we use the ratiosn5K1 /K2 andk5K3 /K2. Minimi-
zation of the functional Eq.~9! yields the equilibrium values
of the anglea and the corresponding profilesu(r) for each
point in the phase plane (n,k). An analysis of the phase
01660
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diagram of all possible skyrmionic solutions for the fun
tional Eq. ~9! and of their stability limits must be done nu
merically and will be presented elsewhere~see, also, Ref.
@19#!. The nonlinear dependence of the energy density~9! on
a5c2f will in the general case only admit solutions fo
certain fixed values of the parametera. In some cases opti
mal values ofa can be obtained without any calculation. F
example, whenK15K3 the minimum of the functional Eq
~9! with respect toa does not depend on the distribution
u(r) and is reached either ata50 (K1,K2) or a5p/2
(K1.K2). In this contribution we consider the skyrmion
with a5p/2 which are of a special interest. First, becau
these structures turned out to be stable for the relation
between the elastic constantsn.1 which holds in all known
nematics@16# ~see the end of this section!. Second, the equi-
librium distribution ofn(r ) in this divergence-free structur
can be described analytically. In this structure, the vecton
rotates in the planes perpendicular to the radial direction
the skyrmion@Fig. 1~b!#. As follows from Eq. ~9!, for a
5p/2, the first term in the Frank energy equals zero, and
skyrmion is formed under the influence of twist and be
interactions only.

We demonstrate in detail this important and mathem
cally interesting case as a representative for the whole c
of axisymmetric skyrmions in nematics. After integratin
with respect tof the functional Eq.~1! reduces to the fol-
lowing form:

W5p K2E
0

`

v dr

5pK2E
0

`F S du

dr
1

sinu cosu

r D 2

1k
sin4u

r2 Gr dr, ~10!

wherev is a reduced energy density per length, and the ra
k5K3 /K2 characterizes relative contributions of the tw
and bend in the total energy balance. The Euler equation
this functional

d2u

dr2
1

1

r

du

dr
2

sin 2u cos 2u

2r2
2k

sin2u sin 2u

r2
50 ~11!

has the first integral

S r
du

dr D 2

5sin2u~cos2u1ksin2u![G~u!. ~12!

Integration of Eq.~12! leads to the equation

cotu1Acot2u1k5r0 /r. ~13!

Here,r0.0 is an integration constant. Using this equati
we can write the solutions for the skyrmion in the followin
form:

cotu5
12k~r/r0!2

2~r/r0!
, c5f1p/2, ~14!

or in Cartesian coordinates
2-3



e

-

lu
r
-
n

tion

s

o-

r

t
ist
e

-

-
ius
etic
n
end

ns
s-
i-

te
r
te
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n5@24V~r/r0!sinf, 4V~r/r0!cosf,

VA@12k~r/r0!2#224~r/r0!2], ~15!

where V51/A@12k(r/r0)2#214(r/r0)2. Skyrmion pro-
files ~14! for different values ofk are plotted in Fig. 2. Note
that the energy of these solutions remains constant und
transformation of the type

ũ~r!5u~r/l!, l.0. ~16!

Phasetrajectoriesor orbits of the solutions

r0

du

dr
5Acos2u1ksin2u~cosu1Acos2u1ksin2u!,

~17!

calculated from Eqs.~12! and ~13!, are plotted in phase
space (u,du/dr) ~Fig. 3!. The orbits~17! start in the points
(0,2/r0) and end in the common point (p,0) @Fig. 3~a!#. As
r0 varies in the region@0,̀ ) the trajectories~17! cover the
whole phase space. Thus, the set of profiles~14! comprises
all possiblesolutions of the boundary value problem~11!
with ~6!. This means that these equations admit only so
tions with Du5p and do not have solutions with highe
winding numbers foru as found for skyrmions in other mod
els ~see, e.g., Ref.@20#!. Near the center of the skyrmio

FIG. 2. Skyrmion profiles for different values of the parame
k5K3 /K2. For weakk ~a! the profiles have arrowlike shape; fo
large k ~b! the skyrmions have strongly localized cores separa
from the outer part by a thin ‘‘domain wall.’’
01660
r a
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(r!r0) the angle u varies linearly with the radius (u
52r/r0) and at large distances (r→`) u5p22r0 /(kr).
These skyrmion structures are determined by a competi
between twist and bend interactions@see Eq.~10!#: The
former includes the derivative ofu, and, thus, suppresse
strong variations ofu ~Fig. 4!. The latter favors states with
small in-plane components. Evolution of the skyrmion pr
files ~Fig. 2! and the phase trajectories@Fig. 3~b!# under
variation of the parameterk reflect these tendencies. Fo
weak bendingenergy~small k) @see Fig. 4~a!# the profiles
u(r) have an arrowlike shape with the steepest slope ar
50 @Fig. 2~a!#. In-plane states do not contribute to the tw
energy. Thus, when the parameterk approaches zero, th
region with values ofu close top/2 expands unlimitedly
@Fig. 3~b!#. Finally, for k50 it transforms into a nonlocal
ized structure~Fig. 5!

u5arctan~2r/r0!. ~18!

Such configurations~vortices! occur in planar systems~e.g.,
in easy-plane ferromagnets! @21#. The energy of these vorti
ces logarithmically increases with increasing vortex rad
and becomes infinite in the case of nonlocalized magn
vortices @21#. On the contrary, the nonlocalized skyrmio
~18! has finite energy because, due to the absence of b
interactions (k50), in-plane inhomogeneous configuratio
yield no contribution to the skyrmion energy. With increa
ing values ofk the influence of bend distortions on the equ

r

d

FIG. 3. Phase trajectories of the skyrmion solutions.~a! Phase
space of the solutions fork52; ~b! phase trajectories for fixedr0

~arbitrarily chosen asr051.0) and different values ofk.
2-4
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SKYRMIONS IN NEMATIC LIQUID CRYSTALS PHYSICAL REVIEW E67, 016602 ~2003!
librium skyrmion structures increases@Fig. 4~b!#. The skyr-
mion profiles transform into structures with a strong
localized core separated from the outer parts by a thin ‘‘
main wall’’ @Fig. 2~b!#. For k.4/3, the profiles have an in

flection point atr* 5r0A2k21A12k21 @Fig. 3~b!#. The pa-
rameterr* increases from zero atk54/3 to its maximum
value atk* 518(112A13)2152.4343; for largerk param-
eter r* monotonically decreases and approaches zero ak
tends to infinity. The Belavin-Polyakov skyrmion~7! with
a5p/2 is included in the general solution~14! as special
case fork51.

FIG. 4. Reduced energy densityv from Eq. ~10! and twist and
bend contributions as functions of angleu for k50.3 ~a! and k
55 ~b!.

FIG. 5. Structure ofn in the core of the nonlocalized skyrmio
~17!.
01660
-

Integration of the energy functional Eq.~10! with the so-
lutions ~14! yields the following expression for the skyrmio
energy

E52pK2J1~k!

52pK25 F11
k

2A12k
lnS 11A12k

12A12k
D G , 0,k,1

F11
k

Ak21
arcsinAk21

k G , k.1.

~19!

For zero bending, the skyrmion energy~19! has the mini-
mum valueE52pK2, and it increases monotonically wit
increasingk ~Fig. 6!.

IV. STABILITY OF THE SOLUTIONS

In this section we investigate the stability of the solutio
~14!. Because the skyrmions have higher energy than
homogeneous state they can represent only local minim
the energy. In this case theirmetastabilitymeans that smal
perturbations of the structure~14! should only increase thei
energy. To check the stability one has to study the ene
change under small perturbations of the localized struc
~14!. We exclude from consideration distortions that viola
axial symmetry because they will only increase the skyrm
energy. Thus, we calculate the energy for a distorted st
ture

ũ~r!5u~r!1j~r!, c̃~r!5c~f!1g, j,g!1. ~20!

Distortions in the basal planeg are assumed to be homog
neous because gradients of the anglec will also increase the
energy. By expanding the energy of the distorted structureW̃
and keeping only terms up to second order inj and g one
obtainsW̃5W(0)1W(2), whereW(0)5E ~19! is the energy
of the undisturbed skyrmion and the energy contribut
W(2) includes terms quadratic with respect to the parame
j andg

FIG. 6. Skyrmion energy~in units of 2pK2) as a function of the
parameterk.
2-5
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W(2)5p K2E
0

`dr

r
@wj

(2)1wg
(2)#,

wj
(2)5r2S dj

dr D 2

1sin4u@cot4u26 cot2u11

1k~3 cot2u21!#j2,

wg
(2)5Fr2~n cos2u1k sin2u21!S du

dr D 2

1~n sin2u2k sin4u2sin2u cos2u!Gg2. ~21!

The angleu(r) is given by Eq.~14!. The termwj
(2) includes

the energy of radial distortions. Perturbationsj(r) describe
arbitrarily small deformations of the profile~14! which do
not violate the boundary conditions~6!, i.e., j(0)5j(`)
50. Stability of the skyrmion with respect to such deform
tions means thatWj

(2) is positive for all functionsj(r) and
can be established by solving the spectral problem for
functionalWj

(2)(j,dj/dr) ~see, e.g., Ref.@20#!. In our case,
however, there is an easier way to resolve the problem.
using the first integral Eq.~12! one can change the variab
in the integral Eq.~21! as

Wj
(2)5p K2E

0

`wj
(2)dr

r

5p K2E
0

p du

AG~u!

3FG~u!S dj

du D 2

1
1

2

d2G~u!

du2
j2G . ~22!

Substitution ofj5AG(u)z into Eq. ~22! yields

Wj
(2)5p K2E

0

p

G~u!S dz

du D 2

du. ~23!

Thus, for all distortionsz(u) the energy contributionWj
(2)

>0. Equality in this relation only holds for constantz. Un-
der all other distortionszÞconst, the skyrmion~14! pre-
serves radial stability. In this connection we note that fu
tions j(u)5CAG(u) (C is an arbitrary constant! describe
scaling transformations~16! for l511j and uju!1. This
result is equivalent to the mentioned invariance of the so
tions ~14! under scaling~16!. Integration in Eq.~21! yields
the following result for the energy contributions due to i
plane distortionsg

Wg
(2)5p K2E

0

` wg
(2)dr

r
5A~n,k!g2, ~24!

A~n,k!5p K2@k~J12J2!22J11n~J21J3!#,

where the functionJ1(k) is introduced in Eq.~19!, and
J2(k) andJ3(k) are defined by
01660
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J255 F 22k

4~12k!
2

k2

8~12k!3/2
lnS 11A12k

12A12k
D G , 0,k,1

F 22k

4~12k!
2

k2

8~12k!3/2
arcsinAk21

k G , k.1,

~25!

J355
1

A12k
lnS 11A12k

12A12k
D , 0,k,1

2 arcsinAk21

k

Ak21
, k.1.

~26!

The skyrmion~14! is stable with respect to homogeneo
in-plane distortions whenA(n,k).0 ~24!. In the phase-
plane (k,n) the critical lineA(n,k)50 confines the region
of skyrmion stability ~Fig. 7!. The area, where the
skyrmion with a5p/2 is unstable, is restricted to sma
values of k and n. The critical line approaches zero a
k54exp(22/n). In all known nematics the splay elast
constant is larger than the twist constant (n.1) @16#. In this
practically important case the skyrmion is stable for arbitra
values of parameterk.

V. DISCUSSION AND CONCLUSIONS

In this paper we have derived analytical solutions~14! for
skyrmions minimizing the Frank free energy~1!. The Frank
functional includes in most general form invariants quadra
with respect to the spatial derivatives of the order parame
And in this connection the functional Eq.~1! can be consid-
ered as a generalization of the O~3! nonlinear sigma mode
~4!. In contrast to the Belavin-Polyakov solutions~7! which
are degenerate with respect to the values of the phasea and
may have arbitrary winding numbersN the nematic skyrmi-
ons, i.e., solutions~14! for the Frank energy have the topo
logical chargeQ51. In addition, the anglea generally has a
fixed value. Only in the special case of equal elastic c
stants the corresponding Belavin-Polyakov solutions e

FIG. 7. Boundary of stability for the skyrmions~14! in the
(n,k) phase plane. The structure is stable above the critical
A(n,k)50; cf. ~24!.
2-6
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SKYRMIONS IN NEMATIC LIQUID CRYSTALS PHYSICAL REVIEW E67, 016602 ~2003!
for arbitrary values ofa due to the isotropy of the elasti
behavior~4!. Here, we analyzed the special case wherea
5p/2: the plane of rotation is perpendicular to the rad
direction @Fig. 1~b!#. We come to the important result tha
due to the anisotropy of the elastic behavior in the full e
pression of the Frank energy~1!, the degeneracy of the sky
mionic solutions in the basal plane is lifted. However, t
skyrmion energy~10! still preserves invariance under th
scale transformations~16!.

Invariance of the solutions~14! with respect to the scaling
transformation~16! means that the Frank energy~1! for nem-
atics does not stabilize skyrmions with well-defined siz
The skyrmions~14! are in the state ofindifferent equilibrium
with respect to arbitrary compression (0,l,1) or stretch-
ing (l.1). Thus, they turn out to be unstable under t
influence of applied electric or magnetic fields in confor
ance with theHobart-Derrick theoremon localized solutions
for this type of functionals@22#. To demonstrate that, w
consider a nematic in a magnetic and electric field and
culate the variation of its energy@~1! with ~2! contribution#
under the scaling transformation~16!. The new energyW̃( ũ)
can be expressed as the following combination of the ene
contributions~1! and ~2! in W(u):

W̃~ ũ !5W01Wf l2,

W05E
0

`

w~u!r dr, Wf5E
0

`

wf~u!r dr. ~27!

It is clear from Eq.~27! that the functional~1! with the
energy contribution~2! does not have local minima for ax
symmetric solutionsu(r). For any of these configurations
the energy~27! can decrease by unlimited compression~if
Wf.0), or expansion (Wf,0) of the core. This result
known asHobart-Derrick theorem@22#, applies to any inter-
action functional consisting of only two types of terms: qu
dratic with respect to spatial derivatives~1! and those includ-
ing no spatial derivatives~2!. It is remarkable that this radia
instability can be eliminated only by adding new terms th
do not belong to the mentioned classes. Hence, skyrm
can be stabilized by terms with spatial derivatives to
power higher than two~e.g., fourth-order gradient terms i
the Skyrme model@5,17#!. In condensed-matter systems su
fourth-order terms arise in models with complex compet
interactions@23#. The skyrmions in such systems have be
investigated in Ref.@24#. Another important mechanism sta
bilizing multidimensional localized structures is provided
iz.
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specific interactions occurring in noncentrosymmetric s
tems due to chiral symmetry breaking@7,25#. Phenomeno-
logically, thesechiral interactions are described by invarian
linear with respect to the first spatial derivatives~known as
Lifshitz invariants! @20,25#. The stabilizing influence of the
chiral interactions on multidimensional localized structur
in noncentrosymmetric liquid crystals, i.e., cholesterics w
be considered in a separate contribution@18#.

There can be other axisymmetric and localized solutio
for the model~1!. As was mentioned above, in some cas
the skyrmion withc5f @Fig. 1~a!# has lower energy than
the skyrmion~14!. Skyrmions with more complex structure
and interacting skyrmions may be an interesting topic
future investigations. We remind that the isotropic model~4!
has multiskyrmion solutions@4#, multitwisted structures@26#,
and skyrmion lattices@27#.

The Belavin-Polyakov solutions@4# as nonlinear, topo-
logically nontrivial, and localized objects have proved to
of great interest in the context of theoretical models
condensed-matter physics. A practical realization of su
skyrmionic textures in real magnetic systems, however
problematic due to the extreme idealization of the model~4!
and the specific character of these solutions. Nematic liq
crystals should provide more favorable conditions for su
experiments. The nematic skyrmions could be generate
the homeotropic texture similarly to isolated bubble doma
in some cholesterics~e.g., by dynamic scattering@16,28#!,
and the relatively slow dynamics in liquid-crystal system
may facilitate the observation of topological excitations.

In this paper the analysis of nematic skyrmions has b
restricted to straight infinite lines in unbounded ideal ma
rials. In confined nematics these localized structures m
create loops or end at defects or confining surfaces. The
fluence of anchoring effects and interactions with disclin
tions add new aspects to the physics of nematic skyrmio
The formation of so-called ‘‘thick threads’’ and their loop
by dynamic scattering@29# may be considered as an indire
indication of the existence of the nematic skyrmions. Strin
like textures generated by rapid cooling through t
isotropic-to-nematic phase transitions in regular@30# and
polymer nematics@31# may be another indication for th
existence of nematic skyrmions.
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